Least squares estimators for discretely observed stochastic processes driven by small Lévy noises

نویسندگان

  • Hongwei Long
  • Yasutaka Shimizu
  • Wei Sun
چکیده

AMS 2010 subject classifications: primary 62F12 62M05 secondary 60G52 60J75 Keywords: Asymptotic distribution of LSE Consistency of LSE Discrete observations Least squares method Stochastic processes Parameter estimation Small Lévy noises a b s t r a c t We study the problem of parameter estimation for discretely observed stochastic processes driven by additive small Lévy noises. We do not impose any moment condition on the driving Lévy process. Under certain regularity conditions on the drift function, we obtain consistency and rate of convergence of the least squares estimator (LSE) of the drift parameter when a small dispersion coefficient ε → 0 and n → ∞ simultaneously. The asymptotic distribution of the LSE in our general setting is shown to be the convolution of a normal distribution and a distribution related to the jump part of the Lévy process. Moreover, we briefly remark that our methodology can be easily extended to the more general case of semi-martingale noises.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Least Squares Estimators for Stochastic Differential Equations Driven by Small Lévy Noises

We study parameter estimation for discretely observed stochastic differential equations driven by small Levy noises. There have been many applications of small noise asymptotics to mathematical finance and insurance. Using small noise models we can deal with both applications and statistical inference. We do not impose Lipschitz condition on the dispersion coefficient function and any moment co...

متن کامل

Parameter Estimation for Ornstein-uhlenbeck Processes Driven by Α-stable Lévy Motions

The parameter estimation theory for stochastic differential equations driven by Brownian motions or general Lévy processes with finite second moments has been well developed. In this paper, we consider the parameter estimation problem for Ornstein-Uhlenbeck processes driven by α-stable Lévy motions. The classical maximum likelihood method does not apply in this context because the likelihood ra...

متن کامل

DYNSTOCH 2013 University of Copenhagen April 17 - 19

s (Talks) 5 Adeline Samson. PARAMETER ESTIMATION IN THE STOCHASTIC MORRIS-LECAR NEURONAL MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Alexander Schnurr. AN ORDINAL PATTERN APPROACH TO DETECT AND TO MODEL DEPENDENCE STRUCTURES BETWEEN FINANCIAL TIME SERIES . . . . . . . . . . . . 7 Benedikt Funke. ADAPTIVE NADARAYA-WATSON LIKE ESTIMATORS FOR THE ESTIMATION ...

متن کامل

Nonparametric inference of discretely sampled stable Lévy processes

We study nonparametric inference of stochastic models driven by stable Lévy processes. We introduce a nonparametric estimator of the stable index that achieves the parametric √ n rate of convergence. For the volatility function, due to the heavy-tailedness, the classical least-squares method is not applicable. We then propose a nonparametric least-absolute-deviation or median-quantile estimator...

متن کامل

Nonparametric adaptive estimation for discretely observed Lévy processes

This thesis deals with nonparametric estimation methods for discretely observed Lévy processes. The following statistical framework is considered: A Lévy process X having finite variation on compact sets and finite second moments is observed at low frequency. In this situation, the jump dynamics is fully described by the finite signed measure μ(dx) = xν(dy). The goal is to estimate, nonparametr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 116  شماره 

صفحات  -

تاریخ انتشار 2013